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We study the entanglement of an impurity at one end of a spin chain with a block of spins using negativity
as a true measure of entanglement to characterize the unique features of the gapless Kondo regime in the
spin-chain Kondo model. For this spin chain in the Kondo regime we determine—with a true entanglement
measure—the spatial extent of the Kondo screening cloud, we propose an ansatz for its ground state and
demonstrate that the impurity spin is indeed maximally entangled with the cloud. To better evidence the
peculiarities of the Kondo regime, we carry a parallel analysis of the entanglement properties of the Kondo
spin-chain model in the gapped dimerized regime. Our study shows how a genuine entanglement measure
stemming from quantum information theory can fully characterize also nonperturbative regimes accessible to
certain condensed matter systems.
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I. INTRODUCTION

The investigation of entanglement or the truly “quantum”
correlations inherent in many-body condensed matter sys-
tems is currently a topic of intense activity.1–9 This emerging
area aims at characterizing many-body states using tools and
measures developed in quantum information. Till date, most
investigations have focused on either the entanglement be-
tween individual elements, such as single spins, or the en-
tanglement between two complementary blocks of a many-
body system. The former entanglement is generically
nonzero only between nearest or next to nearest neighbors.2,3

For complementary blocks, the whole system is in a pure
state and the von Neumann entropy is a permissible measure
of the entanglement. In this context much interest has been
evoked by conventional gapless phases, where, due to the
absence of an intrinsic length scale, the von Neumann en-
tropy diverges with the size of the blocks.4–6 In this back-
drop, it is timely to investigate the entanglement in gapless
regimes of a many-body system for which its true form and
amount may not be characterized through the entanglement
between individual spins or complementary blocks. Kondo
systems are ideal candidate for these investigations.7,10

Kondo systems7,10 are expected to be very distinctive in
the context of entanglement for at least two reasons, �i� De-
spite being “gapless,” they support the emergence of a length
scale �, the so called Kondo screening length,7,10which
should be reflected in the entanglement, making it markedly
different from that in the more conventional gapless models
studied so far; �ii� They are expected to have a more exotic
form of entanglement than the widely studied spin-spin and
complementary block entanglements. Indeed, in Kondo sys-
tems, the impurity spin is expected to be mostly entangled
with only a specific block of the whole system. This is, of
course, merely an intuition which needs to be quantitatively
verified with a genuine measure of entanglement: this is in-
deed the task accomplished in this paper, where we provide
the only characterization of the Kondo regime based entirely
on a true measure of entanglement.

The simplest Kondo model10,11 describes a single impu-
rity spin interacting with the conduction electrons in a metal;
the ground state is a highly nontrivial many body state in
which the impurity spin is screened by conduction electrons
in a large orbital of size �. Many physical observables vary
on the characteristic length scale �, which is a well defined
function of the Kondo coupling.10 Determining the spatial
extent of the Kondo cloud has been so far a challenging
problem repeatedly addressed by various means.7,12,13 This
includes an investigation which introduces a quantity called
“impurity entanglement entropy� which, however, is not a
measure of entanglement and cannot quantify the entangle-
ment within the system.7,8 Recently,14 it has been pointed out
that the universal low energy long distance physics of this
Kondo model arises also in a spin chain when a magnetic
impurity is coupled to the end of a gapless Heisenberg anti-
ferromagnetic J1−J2 spin 1/2 chain, where J1 �J2� is the
�next� nearest-neighbor coupling. When J2 exceeds a critical
value, the spin chain enters a gapped dimerized regime and
its relation to the Kondo model breaks down. Namely, for
0�J2�J2

c =0.2412, the spin system is gapless and it sup-
ports a Kondo regime.7,8 For J2�J2

c, the system enters the
gapped dimer regime, where the ground state takes a dimer-
ized form; at the Majumdar–Ghosh15 point �J2=0.5�, the
ground state becomes just a tensor product of singlets. For
J2�0.5, incommensurability effects16 emerge.

Our aim in this paper is to use a true measure of entangle-
ment to fully characterize the unique features of the gapless
Kondo regime in the spin chain Kondo model. Namely, for
this spin chain in the Kondo regime: �i� we demonstrate that
the impurity spin is indeed maximally entangled with the
Kondo cloud; �ii� we determine the spatial extent of the
Kondo screening length � using only an entanglement mea-
sure; �iii� we motivate an ansatz for its ground state in the
Kondo regime; �iv� we evidence the scaling of a true mea-
sure of entanglement as pertinent parameters are varied. In
order to accomplish these tasks we device a density matrix
renormalization group �DMRG� approach enabling to inves-
tigate the entanglement between a single spin and a pertinent
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block of the chain, which may be applied in other contexts.
Finally, to better evidence the unique properties of the en-
tanglement in the Kondo regime we carry a parallel analysis
of the entanglement properties of this model in the gapped
dimerized regime. Using a true measure of entanglement to
determine � enables to exploit the peculiarities of the Kondo
regime of a spin chain to generate long-range distance inde-
pendent entanglement usable for quantum communication
tasks.17

A true measure of entanglement should satisfy a set of
postulates, for example, it should be nonincreasing under
local actions, such a genuine measure does exist for two
subsystems of arbitrary size even when their combined state
is mixed, as it happens in Kondo systems. This measure is
the negativity18 and it has been successfully used to quantify
the entanglement in a harmonic chain19,20 and between dis-
tant regions of critical systems.21,22 For bipartite systems,
negativity is defined as E=�i�ai�−1, where ai denote the ei-
genvalues of the partial transpose of the whole density ma-
trix of the system with respect to one of the two subsets of
the given partition and � . . . � is the absolute value.18

The paper is organized as follows: In Sec. II, we define an
entanglement healing length for the spin chain Kondo model;
Sec. III explains the DMRG-based approach we devised in
order to compute its entanglement properties. In Sec. IV, we
show the remarkable scaling of a true measure of entangle-
ment �i.e., negativity� in the Kondo regime attainable by the
Kondo spin chain when 0�J2�J2

c =0.2412; in addition, we
motivate an ansatz for the ground state of this chain in the
Kondo regime. Section V is devoted to a summary of our
results and to a few concluding remarks.

II. MEASURING THE ENTANGLEMENT
HEALING LENGTH

The spin chain Kondo model14 is defined by the Hamil-
tonian,

H = J���1 . �2 + J2�1 . �3� + �
i=2

N−1

�i . �i+1 + J2�
i=2

N−2

�i . �i+2,

�1�

where �i= ��i
x ,�i

y ,�i
z� is a vector of Pauli operators at site i,

N is the total length of the chain, J2 is the next nearest neigh-
bor coupling and the nearest neighbor coupling J1 has been
normalized to 1. The impurity spin, located at one end of the
chain, is accounted for by weaker couplings to the rest of the
system; in the following, see Fig. 1�a�, both couplings J1 and
J2 are weakened by the same factor J�, which quantifies then
the impurity strength.

To study the entanglement of the ground state we divide
�see Fig. 1�b�� all the spins of the chain in three different
groups, the impurity spin, block A, which contains the L
spins next to the impurity �L=0,1 , . . . ,N−1� and block B
formed by the remaining N−L−1 spins. We use negativity to
fully characterize the entanglement between the impurity and
block B in both the gapless Kondo and the gapped dimerized
regimes. We determine the size of the block A when the
entanglement between the impurity and block B is almost

zero; by this procedure we measure an entanglement healing
length �EHL� L�, i.e., the length of the block A which is
maximally entangled with the impurity. We show that, in the
gapless Kondo regime, EHL scales with the strength of the
impurity coupling just as the Kondo screening length, �,
does. Thus, in the gapless regime of the Kondo spin chain,
our approach yields a method to detect the Kondo screening
length7,12,13 based on a true measure of entanglement. In ad-
dition, we find that entanglement, as quantified by negativity,
is a homogeneous function of two ratios: N /L� and L /N,
where L is the size of the block A, i.e., the block adjacent to
the impurity, and N is the length of the whole chain. As a
result, the entanglement in the Kondo regime is essentially
unchanged if one rescales all the length scales with the EHL
L�.

III. DMRG ANALYSIS OF ENTANGLEMENT
IN THE SPIN-CHAIN KONDO MODEL

We use the DMRG23 approach to compute the ground
state of the spin chain Kondo model. We analyze large
chains, N=250, to avoid finite size effects and take N to be
even to avoid problems arising from accidental degeneracies.
In a DMRG approach the ground state of the system is par-
titioned in terms of states of a left block, a right block �not to
be confused with blocks A and B� and two intermediate spins
as shown in Fig. 2�a�. The states of the intermediate spins are
given in the computational ��↑ � , �↓ �� basis, while the states
of the both blocks are usually in some non-trivial truncated
DMRG basis. In this approach one has several representa-
tions for the ground state which vary due to the number of
spins in the left �right� block and it is possible to go from one
representation to the other by applying pertinent operators on
each block. The main issue in the DMRG is that the dimen-
sion of the left �right� block is kept constant independent of
whatever spins are there in that block. To have a fixed di-
mension for the left �right� block we truncate the Hilbert
space such that the amount of entanglement between the two
parts of the chain remains almost unchanged.23 To have a

FIG. 1. �Color online� �a� Kondo Spin chain with next nearest
neighbor Heisenberg interaction with one impurity at one end. �b�
The chain is divided into three parts, an impurity, a block A and
a block B. Entanglement is computed between the impurity and
block B.
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precise results we need to sweep all representations of the
ground state for several times to get the proper basis for the
left and the right blocks of all representations. After some
sweeps, when the ground-state energy converges �we keep
states for which the error of the energy would be less than
10−6�, we pause to compute the entanglement. We take a
representation of the ground state, in which the left block
contains just the single impurity spin and the right block
contains N−3 spins: as a result, the single impurity spin is
given in the computational basis and this allows us to com-
pute the negativity later. From this DMRG state, we trace out
the spins belonging to block A before computing the en-
tanglement between the impurity and block B since it is most
convenient to compute the entanglement between the impu-
rity and the block B: due to the entanglement monogamy,
this provides an equivalent information about the entangle-
ment of the impurity with the block A. Our tracing procedure
starts with the density matrix of the ground state of the sys-
tem in the representation shown in Fig. 2�a�; at this stage, the
number of spins in the block A is zero �no spin has been
traced out�, all spins except the impurity belong to the block
B, and the entanglement between the impurity and the block
B is maximal �i.e., E=1�. Then, we trace out the intermediate
spin next to the impurity as shown in Fig. 2�b�; this amounts
to putting that spin into block A. Finally, as shown in Fig.
2�c�, we transform the DMRG basis of the right block so as
to put a single spin at the left of the right block in the com-
putational basis, while the state of the new right block is
given in a DMRG basis. As a consequence, the resulting
density matrix has the exact form of Fig. 2�a� and we can
continue the procedure to trace one spin at each step �i.e., put
more spins in the block A� and compute the entanglement
between impurity and block B.

IV. SCALING OF NEGATIVITY AND ANSATZ FOR
THE GROUND STATE IN THE KONDO REGIME

We find that there is an EHL L� so that, for L�L�, the
entanglement between the impurity and block B is almost
zero: L� provides us with an estimate of the distance for
which the impurity is mostly entangled with the spins con-
tained in block A. For large chains �N�200� in the Kondo
regime, one finds that L� is almost independent of N and
depends only on J�. In the Kondo regime, i.e. for J2�J2

c, L�

depends on J� just as the Kondo screening length � does;7,8

for small J�, L��e�/�J�, where � is a constant. We plot L� as
a function of 1 /�J� in Fig. 3�a�. In a semilogarithmic scale,
the straight line plot exhibited in the Kondo regime �J2=0�
shows that L� may be regarded as the Kondo screening
length. Moreover, the nonlinearity of the same plot in the
dimer regime �J2=0.42�, especially for small J�, shows that,
here, no exponential dependence on 1 /�J� holds.

We observe also a remarkable scaling of negativity in the
Kondo regime. This scaling may be regarded as yet another
independent evidence of the fact that L� is indeed the Kondo
length �. In general, the entanglement E between the impu-
rity and block B is a function of the three independent vari-
ables, J�, L and N which, due to the one to one correspon-
dence between J� and L�, can be written as E�L� ,L ,N�. We
find that, in the Kondo regime, E=E�N /L� ,L /N�. To illus-
trate this, we fix the ratio N /L� and plot the entanglement in
terms of L /N for different values of J� �or equivalently L��
for J2=0 �Fig. 3�b�� and for J2=J2

c �Fig. 3�c��. The complete
coincidence of the two plots in Figs. 3�b� and 3�c� shows
that, in the Kondo regime, the spin chain can be scaled in
size without essentially affecting the entanglement as long
as L� is also scaled. In the dimer regime the entanglement
stays a function of three independent variables, i.e., E
=E�L� ,L ,N�, and, as shown in Fig. 3�d�, the entanglement
does not scale with L�. In our approach, the Entanglement

FIG. 2. �Color online� �a� DMRG representation of the state of
the chain keeps two intermediate spins in ordinary computational
basis and the left and right blocks in a truncated DMRG basis. �b�
The intermediate spin next to the impurity is traced out from the
density matrix of the chain. This tracing is equivalent to adding the
traced out spin to block A. �c� The basis of the right block of
DMRG representation is transformed so that a single spin in the left
side of the right block is represented in the computational basis
while the state of the new right block is given in a DMRG basis.
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FIG. 3. �Color online� �a� L� vs 1 /�J� for both Kondo �J2=0�
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=4 in the dimer regime �J2=0.42�.
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Healing Length L� may be evaluated in both the Kondo and
the dimer regime: the scaling behavior, as well as the depen-
dence of L� on J�, discriminates then between the very dif-
ferent entanglement properties exhibited by the spin chain
Kondo model as J2 crosses J2

c.
We defined L� such that there is no entanglement between

the impurity and block B when block A is made of L� spins.
Conventional wisdom based on previous renormalization
group analysis suggests that, in both regimes, the impurity
and the block A of length L� form a pure entangled state,
while block B is also in a pure state. This is indeed approxi-
mately true in the dimer regime �exactly true for J2=0.5� but
it turns out to be dramatically different in the Kondo regime.
To check this, we computed the von Neumann entropy of the
block B when block A has L� spins and found it to be non-
zero. Thus, the blocks A and B are necessarily entangled in
the Kondo regime as there is no entanglement between the
impurity and B. In fact, after a distance L�, the impurity is
“screened,” i.e., the block B feels as if it is part of a conven-
tional gapless chain and has a diverging von Neumann en-
tropy. The Kondo cloud is maximally entangled with the
impurity as well as being significantly entangled with block
B. Based on the above, a simple ansatz for the ground state
�GS� in the Kondo regime is provided by

�GS� = �
i

�i

�↑��Li
↑�J��� − �↓��Li

↓�J���
�2

� �Ri�J��� , �2�

where �i are constants, 	�Li
↑�J��� , �Li

↓�J���
 and 	�Ri�J���
 are
sets of orthogonal states on the cloud and the remaining sys-
tem, respectively. At the fixed point J�→0 all spins except
the impurity are included in �Li

↑�J��� and �Li
↓�J���. At J�→1,

very few spins are contained in �Li
↑�J��� and �Li

↓�J��� while
	�Ri�J���
 represents most of the chain.

For what concerns the mere evaluation of the amount of
entanglement as J� is varied, we first plot, in Fig. 4�a�, the
negativity as a function of L near the two fixed points, i.e.
J�→0 and J�→1, accessible in the Kondo regime: as ex-
pected, near J�→0 �i.e., for large values of the Kondo
screening length�, the entanglement remains large for rather
large values of L while, for J�→1 �i.e., for a very small
cloud� it decreases rapidly with L. Figure 4�a� �semilogarith-
mic� shows that, also at the extreme limits J�→0 and J�
→1, the entanglement decays exponentially with L since this
a characteristic mark of the entanglement in the Kondo re-
gime. This exponential decay of entanglement is absent in
the dimer regime, Fig. 4�b� shows that, here, only for rather
large J�, the entanglement decays exponentially with L
while, for small J�, the entanglement between the impurity
and block B decays slower than an exponential as a function
of L exhibiting even a plateau at short distances. This latter
feature is evidenced in Fig. 4�c�, and is consistent with the
emergence, for small J�, of long-range valence bonds be-
tween the impurity and far spins as a consequence of the
onset of the dimerized ground state.7 In fact, when J� is
small, J2J� becomes much less than J2

c and the impurity
forms valence bonds with distant spins, while the other spins,
since for them J2�J2

c, form a valence bond with their nearest
neighbor to preserve the dimerized nature of the ground

state: as a result, the impurity shares less entanglement with
nearby spins and fulfills its capacity of entanglement forming
valence bonds with the more distant spins in the chain.

V. SUMMARY AND CONCLUDING REMARKS

To summarize, we analyzed the Kondo spin chain model
from the viewpoint of a genuine entanglement measure,
namely the negativity. This readily shows that the impurity
spin is indeed maximally entangled with the Kondo cloud.
We used negativity to provide an independent method to de-
termine the Kondo screening length and to provide a charac-
terization of the ground state of the Kondo spin chain in the
Kondo regime. We found that, not only is the Kondo regime
of this model distinct from the gapless phases probed to date
using the von Neumann entropy, but the form of the
entanglement—a spin and a block in a mixed state—is also
distinctive. We devised a DMRG approach enabling to com-
pute the entanglement between the impurity and a block of
spins located at the other side of the chain for different
lengths of the block. We showed that, in the Kondo regime,
the EHL L� scales with the impurity coupling J� just as the
Kondo length does: in other words, the impurity, though not
entangled with any individual spin, is shown to be entangled
with the totality of the spins within the Kondo cloud—whose
size is measured by L�—and disentangled from the rest. Our
measure of the entanglement in the Kondo regime led us to
formulate an ansatz for the ground state of the Kondo spin
chain for J2�J2

c. Our approach also shows that, in the Kondo
regime, the entanglement scales exponentially with L /L� and
that, in the gapped dimer regime, though it is still possible to
define an EHL, the impurity-block entanglement is usually
smaller and has no characteristic length scale.
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